1 Matrix Algebra

1.1 Concepts

1. A matrix is a $m \times n$ grid of numbers. This mean m rows and n columns. A vector can either be a row vector or column vector. A row vector is just a single row, so a $1 \times n$ matrix and a column vector is a column or a $m \times 1$ matrix. A scalar is just a number.
We can add two matrices if they are of the same size. We add each entry separately. We can also multiply matrices by scalars.
Given two matrices A, B that are of dimension $m \times n$ and $\ell \times k$, we can multiply them as $A B$ if and only if $n=\ell$. So the number of columns in the first matrix must equal the number of rows in the second matrix. This means that sometimes we can compute $A B$ but not $B A$. If you multiply a $m \times n$ matrix by a $n \times k$ matrix, the outcome is a $m \times k$ matrix.

If two vectors have the same number of elements, then we can take the dot product of them. The dot product of the vectors $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ is a scalar given by $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$. We write it as $\vec{v} \circ \vec{w}$. The norm of a vector is given by $\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}$ and denoted by $|\vec{v}|$. Then $|a|=0$ if and only if $a=0$, the 0 vector. Let α be the angle between two vector \vec{v}, \vec{w}, then $\vec{v} \circ \vec{w}=|\vec{v}| \cdot|\vec{w}| \cos \alpha$.
Cauchy-Schwarz inequality says that $|\vec{v} \circ \vec{w}| \leq|\vec{v}| \cdot|\vec{w}|$.
For a $m \times n$ matrix A, the transpose A^{T} is the $n \times m$ matrix with all the elements flipped around.

1.2 Examples

2. Let $A=\left(\begin{array}{lll}3 & 5 & 6 \\ 1 & 2 & 2\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 0 \\ 3 & 3 \\ 0 & -2\end{array}\right)$. Calculate $A+2 B^{T}$ and $A B$.
3. Find the angle between the two vector $v=(1,3,5,-2,4,3)$ and $w=(1,1,5,2,2,1)$.
4. Suppose that $a+b+c+d=1$. Prove that $a^{2}+b^{2}+c^{2}+d^{2} \geq \frac{1}{4}$.

1.3 Problems

5. True False If A is a matrix and v is a vector, then $A v$ (assuming we can take such a product) is another vector.
6. True False If there are matrices such that $A B=M$ and we know the dimensions of M, then we know the dimensions of A and B.
7. Let $A=\left(\begin{array}{ccc}2 & 3 & 3 \\ -1 & 0 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}5 & -1 \\ -3 & -4 \\ 0 & 1\end{array}\right)$. Calculate $A B$ and $B A$.
8. Represent the system of equations $3 x+5 y+2 x=11,8 x-y=0$ in matrix form as $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=b$ with A being a matrix and b a vector.
9. Let $v=(1,2,2,-1)$ and $w=(5,3,-5,3)$. Calculate $v \circ w$ and $|v|$.
10. Suppose that A is a matrix such that $A\left(\begin{array}{c}1 \\ 1 \\ 11\end{array}\right)=\binom{0}{5}$. What are the dimensions of A ? Come up with an example for A. Is the size unique? Is A unique?
11. When is $|\vec{v} \circ \vec{w}|=|\vec{v}| \cdot|\vec{w}|$? (Hint: What is α ?)
12. Find a 2×2 matrix A with no 0 's such that $A^{2}=0$.
13. Find x, y such that

$$
\left(\begin{array}{cc}
-3 & 2 \\
y & x
\end{array}\right)\left(\begin{array}{cc}
-2 & 5 \\
x & y
\end{array}\right)=\left(\begin{array}{cc}
y & -7 \\
-7 & 16
\end{array}\right)
$$

2 Determinants and Inverses

2.1 Concepts

14. The determinant is defined only for square matrices. It is a scalar. The determinant for a 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the number $a d-b c$.
The inverse of a matrix is defined only for square matrices. The inverse of A is a matrix B such that $A B=B A=I$, the identity matrix with 1 s on the diagonal and 0 everywhere else. The inverse is always unique if it exists. The inverse of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is the matrix $B=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$. The inverse of a square matrix exists if and only if the determinant is nonzero.

We can use the inverse to easily solve equations of the form $A x=b$ where x, b are vectors and A is a matrix because we can write $x=A^{-1} b$ if A is invertible. This always has a unique solution if A is invertible. If A is not invertible, this is 0 solutions or ∞ solutions.

2.2 Examples

15. Find x, y such that $2 x+3 y=4$ and $x+y=1$.

2.3 Problems

16. True False We can take determinants of 3×3 matrices but just haven't learned it yet.
17. True False We can take determinants of 2×3 matrices but just haven't learned it yet.
18. True False If A is a noninvertible square matrix, then $A x=b$ may still have a unique solution.
19. True False If $\operatorname{det}(A)=0$, then $A x=b$ has no solutions.
20. Give a 2×2 matrix with determinant equal to 5 . Is it unique?
21. Find the inverses for the following matrices:

$$
\left(\begin{array}{cc}
3 & 5 \\
-4 & -8
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 5 \\
3 & 4
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 5 \\
-1 & -8
\end{array}\right)
$$

22. Find a matrix X such that $\left(\begin{array}{cc}5 & 13 \\ 3 & 8\end{array}\right) X=\left(\begin{array}{ccc}1 & 4 & 1 \\ -1 & 2 & 1\end{array}\right)$.
